Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(51): 16183-16193, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36520051

RESUMO

Multilayer hyperbolic metamaterial (HMM)-based SERS substrates have received special consideration because they accommodate various propagation modes such as surface plasmonic polaritons (SPP). However, the SPP modes are difficult to generate in HMM due to their weak electric field enhancement. In this article, we designed novel SERS substrates consisting of graphene-covered AgNPs and HMM. The graphene-covered AgNPs work as an external coupling structure for hyperbolic metamaterials due to this structure exhibiting significant plasmonic effects as well as unique optical features. The localized surface plasmonic resonance (LSPR) of the graphene-covered AgNPs excited the SPP and thus formed a strong hot spot zone in the nanogap area of the graphene. The Raman experiment was performed using rhodamine 6G (R6G) and crystal violet (CV), which showed high stability and a maximum enhancement factor of 2.12 × 108. The COMSOL simulation further clarified that enhanced SERS performance was due to the presence of monolayer graphene and provided an atomically flat surface for organic molecules in a more controllable manner. Interestingly, the proposed SERS structure carries out quantitative detection of thiram in soil and can satisfy the basic environmental need for pesticide residue in the soil.

2.
Opt Express ; 30(8): 13226-13237, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472940

RESUMO

In this paper, we designed a surface-enhanced Raman scattering (SERS) substrate for graphene/Ag nanoparticles (Ag NPs) bonded multilayer film (MLF) using the hybrid nanostructures composed of graphene and plasmonic metal components with significant plasmonic electrical effects and unique optical characteristics. This paper achieved the advantages of efficient utilization of electromagnetic field and reduction of fluorescence background based on the electromagnetic enhancement activity of Ag NPs and unique physical/chemical properties of graphene with zero gap structures. Au/Al2O3 was stacked periodically to construct MLF. As indicated by the electric field intensity at the Au/Al2O3 interface of the respective layer, bulk plasmon polariton (BPP) in the MLF was excited and coupled with localized surface plasmon (LSP) in the Ag NPs, which enhanced the electromagnetic field on the top-layer of SERS substrate. To measure the performance of the SERS substrate, rhodamine 6G (R6G) and malachite green (MG) were used as the probe molecules, with the detection limits of 10-11 M and 10-8 M, respectively. The SERS substrate had high sensitivity and uniformity, which indicated that it has a broad application prospect in the field of molecular detection.


Assuntos
Grafite , Nanopartículas Metálicas , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos
3.
Opt Express ; 30(6): 10187-10198, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299428

RESUMO

Localized surface plasmon resonance (LSPR) optical fiber biosensing is an advanced and powerful label-free technique which gets great attention for its high sensitivity to refractive index change in surroundings. However, the pursuit of a higher sensitivity is still challenging and should be further investigated. In this paper, based on a monolayer graphene/gold nanoparticles (Grm/Au NPs) three-dimensional (3D) hybrid structure, we fabricated a D-shaped plastic optical fiber (D-POF) LSPR sensor using a facile two-step method. The coupling enhancement of the resonance of this multilayer structure was extremely excited by the surface plasmon property of the stacked Au NPs/Grm layer. We found that the number of plasmonic structure layers was of high importance to the performance of the sensor. Moreover, the optimal electromagnetic field enhancement effect was found in three-layer plasmonic structure. Besides, the n*(Grm/Au NPs)/D-POF sensor exhibited outstanding performance in sensitivity (2160 nm/RIU), linearity (linear fitting coefficient R2 = 0.996) and reproducibility. Moreover, the sensor successfully detected the concentration of glucose, achieving a sensitivity of 1317.61 nm/RIU, which suggested a promising prospect for the application in medicine and biotechnology.


Assuntos
Grafite , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Fibras Ópticas , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície/métodos
4.
Opt Express ; 29(6): 8890-8901, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820330

RESUMO

In the present study, a nanoparticle-multilayer metal film substrate was presented with silver nanoparticles (Ag NPs) assembled on a multilayer gold (Au) film by employing alumina (Al2O3) as a spacer. The SERS performance of the proposed structures was determined. It was suggested that the SERS effect was improved with the increase in the number of layers, which was saturated at four layers. The SERS performance of the structures resulted from the mutual coupling of multiple plasmon modes [localized surface plasmons (LSPs), surface plasmon polaritons (SPPs), as well as bulk plasmon polaritons (BPPs)] generated by the Ag NP-multilayer Au film structure. Furthermore, the electric field distribution of the hybrid system was studied with COMSOL Multiphysics software, which changed in almost consistency with the experimentally achieved results. For this substrate, the limit of detection (LOD) was down to 10-13 M for the rhodamine 6G (R6G), and the proposed SERS substrate was exhibited prominently quantitatively detected capability and high reproducibility. Moreover, a highly sensitive detection was conducted on toluidine blue (TB) molecules. As revealed from the present study, the Ag NP-multilayer Au film structure can act as a dependable SERS substrate for its sensitive molecular sensing applications in the medical field.

5.
Nanomaterials (Basel) ; 11(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652800

RESUMO

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10-10 and 10-8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.

6.
J Hazard Mater ; 388: 122081, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31958610

RESUMO

The heavy metals, namely lead (Pb), cadmium (Cd), and mercury (Hg), have been studied extensively in various independent studies. It has been seen that these metals are usually detected simultaneously in the human blood at low levels. However, it is unknown whether exposure to these heavy metal mixtures (MM) can induce neurological damages at these low levels. Therefore, we investigated the influence of the Pb, Cd, and Hg mixture on the nervous system in rats at exposure doses equivalent to those normally found in the human blood. After pregnant rats being exposed to MM via drinking water throughout the gestation and lactation, their offspring were followed-up till adulthood. MM caused cognitive deficits and impairments in a dose-dependent manner. Furthermore, MM disrupted dendritic spines, the structural basis of learning and memory, and induced changes in spine-related pathways. Meanwhile, we explored an early and safe way to remedy these impairments through a postnatal enriched environment. The enriched environment ameliorated MM-impaired cognitive function, synaptic plasticity, and spine-related pathways. This study demonstrated that low-dose co-exposure to Pb, Cd, and Hg can cause cognitive and synaptic plasticity deficits and timely intervention through the enriched environment has a certain corrective effect.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Troca Materno-Fetal , Metais Pesados/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Meio Ambiente , Feminino , Aprendizagem/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Gravidez , Ratos Sprague-Dawley
7.
Sci Total Environ ; 701: 134901, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31710906

RESUMO

Heavy metal lead (Pb) is widely distributed in the environment and can induce neurodegeneration. Accumulating evidence has shown that ryanodine receptors (RyRs) play vital roles in neurodegenerative brain. However, whether aberrant RyRs levels contribute to Pb-induced neurodegeneration has largely remained unknown. In the present study, we report the important role of elevated levels of RyRs in Pb-induced neurodegeneration. Pb was found to upregulate the levels of RyRs in the rat hippocampal tissues and rat pheochromocytoma (PC12) cells. Furthermore, exposure to Pb induced neurodegenerative cognitive impairment in rats, depressed the long-term potentiation (LTP) in the rat brain slices, increased the neuronal intracellular free calcium concentration ([Ca2+]i), inhibited the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclic adenosine 3',5'-monophosphate (cAMP) response element binding protein (CREB) as well as the expression of anti-apoptotic protein B-cell lymphoma 2 (Bcl2), and activated the phosphorylation of extracellular regulated protein kinases (Erk) protein both in vitro and in vivo. In addition, the knockdown of RyR3 in PC12 cells significantly decreased the [Ca2+]i levels, increased the CaMKIIα and CREB phosphorylation, decrease the phosphorylation of Erk, and elongated the cognitive function-related neurite outgrowth after exposure to Pb. Moreover, treatment with a RyRs agonist showed the involvement of RyRs in Pb-induced depression in LTP in the rat brain slices. In summary, we determined that Pb-mediated upregulation of RyRs led to neurodegeneration via high levels of free calcium, depression of the calcium-dependent CaMKIIα/CREB mnemonic signaling pathway, and activation of the calcium-dependent Erk/Bcl2 apoptotic signaling pathway. These findings on the impact of Pb on the levels of RyRs could further improve our understanding of Pb-induced neurotoxicity and provide a promising molecular target to antagonize Pb-induced neurodegenerative diseases.


Assuntos
Chumbo/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Ratos
8.
Environ Int ; 133(Pt B): 105192, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31639605

RESUMO

The heavy metals lead (Pb), cadmium (Cd) and mercury (Hg) are common environmental pollutants that can be detected simultaneously in blood, serum, and urine samples from the general human population. However, there is limited information regarding toxicity of low-level exposure to Pb, Cd, and Hg mixtures. Our previous research showed the interaction of these three elements at low concentrations in vitro. In this study, we further evaluate early effects of low dose exposure to Pb, Cd, and Hg mixtures on the brain, heart, liver, kidney, and testicle in rats. Pregnant rats were exposed to various concentrations of heavy metal mixtures (MM) in drinking water, during gestation and lactation, and the impacts on offspring were measured at postnatal day 23. Our results showed that the concentrations of Pb, Cd, and Hg in the blood of rat pups were similar to those in the blood of the general human population. Additionally, the MM concentrations in their blood and brain significantly increased in a dose-dependent manner. MM exposure caused histopathological changes in the brain, liver, kidney and testicle. Statistically significant increases in liver CYP450 and PON1, kidney KIM1, and decrease in testicle SDH were observed. In the brain, significant increases were detected in oxidative stress, intracellular free calcium, and cell apoptosis. Further neurobehavioral testing revealed that MM exposure caused dose-dependent impairments in learning and memory as well as sensory perception. MM exposure also disrupted synapse remodeling, which may be associated with pathways involved in dendritic spine growth, maintenance, and elimination. These results suggested that exposure to Pb, Cd, and Hg mixtures, at human environmental exposure related levels, caused damage to multiple organs as well as impairments in neurobehavioral functions of rats. Our findings emphasize the need to control and regulate potential sources of heavy metal contamination.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Lactação , Chumbo/toxicidade , Mercúrio/toxicidade , Animais , Exposição Ambiental , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...